M.A I Semester ## (Paper –III) | Course Title | Mathematics for Economics | | | | | |------------------------|---|--|--|--|--| | Course Type | Core Course | | | | | | Credit Value | 05 | | | | | | Max. Marks | 100 | | | | | | Course Learning | On successful completion of this course, the students will be | | | | | | Outcomes CLO) | able to: | | | | | | | Explain the interrelationships between mathematics, mathematical economics, and econometrics. Demonstrate a clear understanding of various number systems and effectively apply them in economic contexts. Utilize set theory concepts, including operations on sets, to represent and analyze economic problems. Perform matrix operations, including addition, multiplication, finding inverses, and determinants, to solve economic models. Employ various methods to solve systems of linear equations arising in economic applications. Employ various methods to utilize Integration and Differentiation | | | | | | Unit | Topics | | | | | |-------------------------------|--|--|--|--|--| | Unit-1 | The nature of Mathematical Economics; Mathematical vs. Non- | | | | | | Introduction to | mathematical Economics; Variables (Endogenous and Exogenous), | | | | | | Mathematical | Constant, Coefficient and Parameters; Equations, In-equations and | | | | | | Economics | Identities. | | | | | | | Mathematical Preliminaries: Number system, Natural numbers, Whole numbers, Integers, Rational and Irrational numbers, Complex numbers, Indices and surds, Laws of indices, Logarithms. | | | | | | | IKS: Karani (Surds) | | | | | | Unit -2
Sets and Functions | Definition of Set, Elements, Set Notations (enumeration | | | | | | Sets and Functions | description); Finite and infinite sets; Relationship between Sets - Equal Sets, Subset, Superset, Power Set, Null or Empty sets, Disjoint Set; | | | | | | | Operations on Sets - Union, Intersection, Complement Set, Universections; Laws on Set Operations - Commutative and Distributive Law. Relations and Functions: Definition, Domain and range of function Continuous and discrete function, Composition and inverse function | Order of composition, Decomposition of a function, Classification of functions. | | | | | |---|---|--|--|--|--| | | Activity - Identify 5 Functions from Economics. | | | | | | Unit -3
Matrices, Determinants
and Simultaneous
Linear Equations | Concept of Matrices, Type of Matrices, Operations on Matrices, Addition and Multiplication of Matrices, Singular and Non - Singular Matrices, Transpose, Ad-joint and Inverse of Matrices; Determinants, Solution of Simultaneous Linear Equations. | | | | | | | Activity -Give 5 examples of dataset arranged in a Matrix form. | | | | | | Unit -4
Differentiation | Derivative, Process of Differentiation, Rules of Differentiation of a function, Derivatives of higher order, Sign of derivative and nature of function, I and II order conditions for Maxima and Minima and saddle point. | | | | | | | Activity- Utilize Differentiation to calculate Marginal Utility for a Utility Equation. | | | | | | Unit -5
Integration | Basic formula of integration, Standard results, substitution method, Method of partial fractions; Application of Integration in Economics. | | | | | | | Activity- Utilize Integration to calculate Consumer Surplus for a Demand Equation. | | | | | ## **Recommended Supporting Books/Texts/Reading Material:** - 1. A. C. Chiang, "Fundamental Methods of Mathematical Economics," Me Graw-Hill, New York, 1984. - 2. Business Mathematics P. Mariappan, Publisher: Pearson - 3. Mathematics for Economists B.C. Mehta, G.M.K. Madanani, Publisher: Sultanchand & Sons - 4. Business Mathematics- M. Wilson, Publisher: Himalaya Publishing House - 5. An Introduction to Mathematical Economics D. Bose, Publisher: Himalaya Publishing House - 6. Sydsaeter, K., Hammond, P. (2002). Mathematics for economic Analysis, Pearson Educational. - 7. History and Development of Mathematics in India, 2022, pp. 182-192.